Decoherence Rates in Large Scale Quantum Computers and Macroscopic Quantum Systems
نویسنده
چکیده
Markovian regime decoherence effects in quantum computers are studied in terms of the fidelity for the situation where the number of qubits N becomes large. A general expression giving the decoherence time scale in terms of Markovian relaxation elements and expectation values of products of system fluctuation operators is obtained, which could also be applied to study decoherence in other macroscopic systems such as Bose condensates and super-conductors. A standard circuit model quantum computer involving three-state lambda system ionic qubits is considered, with qubits localised around well-separated positions via trapping potentials. The centre of mass vibrations of the qubits act as a reservoir. Coherent one and two qubit gating processes are controlled by time dependent localised classical electromagnetic fields that address specific qubits, the two qubit gating processes being facilitated by a cavity mode ancilla, which permits state interchange between qubits. With a suitable choice of parameters, it is found that the decoherence time can be made essentially independent of N .
منابع مشابه
On Quantum Computing with Macroscopic Josephson Qubits
The achievements of quantum computation theory, e.g. Shor’s factoring algorithm, motivate efforts to realize quantum computers. Among systems proposed for quantum computing macroscopic superconducting circuits of Josephson junctions appear promising for integration in electronic circuits and large-scale applications. Recently, a superconducting tunnel junction circuit was designed and a suffici...
متن کاملDecoherence effects on quantum Fisher information of multi-qubit W states
Quantum fisher information of a parameter characterizing the sensitivity of a state with respect to parameter changes. In this paper, we study the quantum fisher information of the W state for four, five, six and seven particles in decoherence channels, such as amplitude damping, phase damping and depolarizing channel. Using Krauss operators for decoherence channels components, we investigate t...
متن کاملA Quantum to Classical Phase Transition in Noisy Quantum Computers
The fundamental problem of the transition from quantum to classical physics is usually explained by decoherence, and viewed as a gradual process. The study of entanglement, or quantum correlations, in noisy quantum computers implies that in some cases the transition from quantum to classical is actually a phase transition. We define the notion of entanglement length in ddimensional noisy quantu...
متن کاملSurvey on the Bounds of the Quantum Fault-tolerance Threshold
One of the major di culties that experimental physicists and engineers face in attempting to build large scale quantum computers is dealing with decoherence (which is when the qubits inadvertently interact with their environment causing their states to collapse). Decoherence is almost inherently unavoidable, because quantum computation requires that the operator (who for this purpose is part of...
متن کاملCan We Advance Macroscopic Quantum Systems Outside the Framework of Complex Decoherence Theory?
Macroscopic quantum systems (MQS) are macroscopic systems driven by quantum rather than classical mechanics, a long studied area with minimal success till recently. Harnessing the benefits of quantum mechanics on a macroscopic level would revolutionize fields ranging from telecommunication to biology, the latter focused on here for reasons discussed. Contrary to misconceptions, there are no kno...
متن کامل